ICH HARMONISED GUIDELINE

Guideline for Optimisation of Safety Data Collection (Draft version, Endorsed on 3 April 2019)

ICH E19 指引意見彙整表

段落	標題	内文(摘自 E19 draft guideline,仍以 ICH 文件為準)	相關建議及意見
			(請提供中英文內容)
1	INTRODUCTION	This Guideline is intended to provide internationally harmonised guidance on an optimised	
1.1	Objective of the Guideline	approach to safety data collection in some late-stage pre-approval or post-approval studies	
		when the safety profile of a drug is sufficiently characterised. Optimisation of safety data	
		collection using a selective approach may improve the efficiency of clinical studies while	
		reducing the burden to study participants. Adoption of an internationally harmonised	
		approach to selective safety data collection may facilitate global participation in clinical	
		studies.	
1.2	Background	Regulators and industry have a shared interest in reducing the burden to study participants	
		while facilitating the conduct of studies that could yield important new medical knowledge	
		and advance public health. Although safety monitoring of patients during clinical studies	
		remains critically important, unnecessary and burdensome data collection may serve as a	
		disincentive to participation in clinical studies, e.g., frequent and time-consuming patient	
		visits; laboratory tests; and/or physical examinations.	
		Knowledge about a medicinal product's safety profile continually evolves as safety data	
		accumulates. Throughout the course of medicinal product development and subsequently	
		while the drug is marketed, sponsors collect extensive safety-related data, including all vital	
		signs, laboratory data, and adverse events. In the later stages of drug development, and if the	
		safety profile is well-understood and documented, comprehensive collection of all safety data	
		may provide only limited additional knowledge of clinical importance. In such circumstances,	
		a more selective approach to safety data collection may be adequate and optimal, as long as	
		the study objectives and the welfare of study participants are not compromised.	
		Importantly, sponsors and investigators should ensure that routine patient care is not	

		compromised by the selective safety data collection approach outlined in this Guideline. It is
		recognised that safety monitoring serves to protect individual study participants and will
		continue to be performed as per standard of care.
1.3	Scope of the Guideline	This guidance is intended to apply to collection of safety data during the late-stage
		development of medicinal products in interventional and non-interventional studies, in the
		post-approval setting and, for specific cases, in the pre-approval setting.
		In the pre-approval setting, comprehensive safety data collection is expected in order to
		elucidate frequency, severity, seriousness, and dose-response of adverse events, including
		potential differences across subsets, e.g., demographic; concomitant illnesses; and/or
		concomitant therapy. However, even before approval of a new medicinal product, if there is
		agreement with regulatory authorities that sufficient safety data are available or are being
		collected in ongoing late-stage studies, selective safety data collection may be appropriate in
		certain studies.
		Selective safety data collection following the principles of this Guideline does not alter
		local/regional safety reporting requirements
2	GENERAL PRINCIPLES	1. Non-serious adverse events
2.1	Types of Data for Which	2. Routine laboratory tests
	Selective Safety Data	3. Information on concomitant medications
	Collection May be	4. Physical examinations (including vital signs)
	Appropriate	5. Electrocardiograms
2.1.1	Types of Safety Data	
	Where It May be	
	Appropriate to Limit or	
	Stop Collection	
2.1.2	Types of Safety Data That	For the following types of events/data, comprehensive details should generally be provided to
	Should Generally be	allow adequate assessment of the event/data, e.g., history; associated adverse events;
	Collected under All	relevant laboratory values; concomitant medications; vital signs; and/or follow-up outcome.
	Circumstances	1. Deaths

		2. Serious adverse events	
		3. Significant adverse events that led to an intervention, including withdrawal or	
		dosereduction of investigational medicinal product or addition of concomitant therapy	
		4. Marked laboratory abnormalities (other than those meeting the definition of serious)	
		5. Overdose	
		6. Pregnancies	
		7. Adverse events of special interest (if defined). These adverse events may warrant collection	
		of additional information across the entire study population to better characterise these	
		events (e.g., particular laboratory parameters; vital signs; risk factors; concomitant therapies;	
		and/or concomitant illnesses). For example, if gastrointestinal haemorrhage was an adverse	
		event of special interest, one might want to proactively collect concomitant antithrombotic	
		therapy across the entire study population	
		8. Laboratory data, vital signs, electrocardiograms of special interest (if defined)	
2.1.3	Baseline Data	Use of a selective safety data collection approach does not change considerations for baseline	
2.1.5	Daseille Dala		
		data collection. Baseline data are needed to ensure that subjects meet inclusion and exclusion	
		criteria for study enrolment and are important in the assessment of safety. For example,	
		particular serious adverse events may occur more frequently in subgroups defined on the	
		basis of demographics, baseline disease characteristics, coexisting illnesses, or concomitant	
		therapies; analyses of such information can be important in considering the benefit-risk	
		profile of the drug.	
2.2	When May Selective Safety	When sponsors choose to implement selective safety data collection for a clinical study, a	
	Data Collection Be	scientific justification should be provided. Factors that contribute to a determination that	
	Considered?	selective safety data collection would be appropriate include:	
		1. The medicinal product has received marketing authorisation from a regulatory authority for	
		the indication under investigation	
		2. Availability of post-approval safety data and findings	
		3. The dose, dosing regimen, dosage form, route of administration and treatment duration	
		used in the previously conducted studies are comparable to the planned use of the drug in the	

		proposed study
		4. The patient population from previously conducted studies is representative of subjects in
		the planned study regarding demographic characteristics, underlying medical conditions,
		concomitant drugs, and other important factors (e.g., Cytochrome P450 enzymes (CYP)
		metabolizer status)
		5. Exposure in previously conducted (or ongoing, if applicable) studies that contribute to the
		overall safety database, i.e., number exposure to drug, treatment duration
		6. Consistency of the safety profile across previous studies
		7. Characteristics of previous studies, e.g., study design; study conduct; adequacy of safety
		monitoring/safety data collection; availability of protocols; statistical analysis plan; and/or
		access to data
		8. Knowledge of the mechanism of action of the medicinal product under study
		9. Knowledge of the safety profile of approved drugs in the same pharmacologic class
		The above factors should be considered in determining whether the safety of the medicinal
		product has been sufficiently characterised to provide justification for selective safety data
		collection in the proposed study.
		In the pre-approval setting, selective safety data collection may be justifiable if sufficient
		safety data are available from completed studies. Moreover, when sufficient safety data will
		be forthcoming from one or more ongoing late-stage study(ies), selective safety data
		collection may be appropriate for a concurrently conducted study-initiated pre-approval.
2.2.1	Benefit-Risk	It should be recognised that the contribution of non-serious adverse events to the benefit-risk
	Considerations for	profile of a drug may differ depending on the indication of use and patient characteristics
	Selective Safety Data	(e.g., age and/or cardiovascular risk factors). These factors should be considered when
	Collection	accepting the comparability of patient populations and the applicability of selective safety
		data collection. For example, even when safety of a drug is sufficiently characterised in a
		patient population with advanced disease, comprehensive safety data collection in a patient
		population with less advanced disease may be appropriate to ensure that the benefits
		outweigh the risks in the less severely affected population.

2.2.2	Extent of Exposure	Selective safety data collection could be considered for studies using lower doses and/or	
		shorter durations than in previous studies. Conversely, selective safety data collection would	
		generally not be acceptable if higher doses and/or longer treatment durations than previously	
		studied are planned. Nonetheless, even when exposure is greater in the planned study, there	
		may be circumstances where selective safety data collection is still appropriate, e.g., a study	
		designed to characterise infrequent serious adverse events (e.g., renal toxicity; myocardial	
		infarction; and/or stroke) associated with longer term use of the medicinal product within the	
		labelled indication; a planned five-year study when a one-year study has been completed.	
2.3	Examples Where Selective	Selective safety data collection may be appropriate in studies used to evaluate some of the	
	Safety Data Collection May	following objectives. These are not the only circumstances where selective safety data	
	be Considered	collection may be appropriate.	
		1. New indications of approved drugs	
		2. To study additional endpoints, e.g., patient-reported outcome for symptomatic	
		improvement; quality of life; and/or outcome studies (e.g., mortality; morbidity; and/or	
		specific safety issues)	
		3. To study comparative effectiveness/efficacy	
		4. Demonstration of superiority when non-inferiority has been demonstrated	
		5. Characterisation of adverse events of special interest	
		6. Fulfilment of post-approval requirements, post-authorisation safety studies based on data	
		collection from registries or electronic health records	
		7. Late-stage premarketing outcome study in a large population	
		Additional examples and situations for applying selective safety data collection may be found	
		in Section 3, Methods of Implementation	
2.4	Ensuring Patient Safety	Patient safety monitoring serves two purposes: 1) to protect the welfare of individual study	
	within Studies	participants; and 2) to accumulate safety information to be used in the assessment of benefit	
		risk for the proposed indication. The recommendations in this Guideline do not obviate the	
		need for monitoring to protect individual patient welfare. Although certain safety data, e.g.,	
		non-serious adverse events, would not need to be recorded in the case report form (CRF)	

		when selective safety data collection is determined to be appropriate, the protocol should	
		stipulate that patients are monitored per standard of care. For example, for a medicinal	
		product known to cause hyperglycaemia, where routine blood glucose monitoring is	
		recommended in labeling, glucose should be monitored in patients participating in a study. If	
		hyperglycaemia is well characterised with this medicinal product, the glucose data do not	
		need to be recorded in the CRF or reported to the sponsor in studies using selective safety	
		data collection. Glucose levels would be recorded in the CRF and reported to the sponsor if	
		stipulated in the protocol, e.g., as an adverse event of special interest, associated with a	
		serious adverse event.	
2.5	Changes in Approach to	When an unexpected safety issue arises during the course of a study, e.g., a postmarketing	
	Safety Data Collection	safety signal; a finding from a nonclinical study; higher than expected withdrawals; and/or	
		concern from a data monitoring committee; a change in the selective safety data collection	
		approach may be warranted, e.g., denoting a new adverse event of special interest; and/or	
		reverting to comprehensive safety data collection.	
2.6	Early Consultation with	Studies must be conducted according to local and regional laws and regulatory requirements.	
	Regulatory Authorities	When sponsors are considering selective safety data collection in interventional studies, they	
		should discuss their scientific rationale and planned methods with regulatory authorities prior	
		to initiating the study(ies). The same applies to non-interventional studies that are being	
		conducted to address requests from regulatory authorities.	
		It is possible to conduct a multi-regional clinical study using a single protocol with selective	
		safety data collection if the safety profile of the product is considered to be sufficiently	
		characterised, and all regulatory authorities agree with the proposed approach. A well	
		designed multi-regional clinical study that takes this Guideline into account will help the	
		sponsor reach agreement with regulatory authorities in multiple regions (See ICH E17 –	
		General Principles for Planning and Design of Multi-Regional Clinical Trials).	
3	METHODS OF	Having considered the principles outlined in Section 2, General Principles, with respect to	
	IMPLEMENTATION	when it may be appropriate to limit or stop collection of certain types of safety data, a	
		number of approaches for selective safety data collection may be considered.	

		Use of selective safety data collection can introduce important complexities in study conduct
		and safety analysis. The specific approaches should be carefully planned and clearly
		delineated within the relevant study documents, e.g., protocol; monitoring plan; and/or
		statistical analysis plan, with a reference to this Guideline.
		Regardless of the method chosen, it is essential to ensure patient safety and adhere to local
		and regional laws and regulations. When the selective safety data collection approach is used
		for a clinical study, the approach should be described in the appropriate document(s) when
		safety findings are presented, e.g., the Clinical Study Report (CSR); Development Safety
		Update Report (DSUR); Periodic Benefit-Risk Evaluation Report (PBRER); Periodic Safety
		Update Report (PSUR); and/or Common Technical Document (CTD).
		The following examples of methods of implementation are not meant to be all-inclusive.
		These approaches can be applied in both the pre- and post-approval settings and require a
		scientific rationale and justification. The data supporting these approaches are more likely to
		be available in the post-approval setting than in the pre-approval setting.
3.1	Selective Safety Data	For all patients in the study, parameters listed in Section 2.1.2, General Principles, are
	Collection for All Patients	collected throughout the study, e.g., serious adverse events; adverse events of special
	in the Study	interest; and/or deaths. Conversely, the parameters listed in Section 2.1.1, General Principles,
		are not collected, e.g., non-serious adverse events; routine laboratory values; concomitant
		medications; physical examination data; vital signs; and/or electrocardiograms.
		In the post-approval setting, this approach may be useful to address a specific safety concern,
		for example, to meet a post-authorisation commitment, when safety in other regards has
		been sufficiently characterised.
		In the pre-approval setting, this approach may be also used. For example, consider a
		development programme for a lipid-lowering drug, where a decrease in low-density
		lipoprotein (LDL) cholesterol will serve as the basis of approval, but the impact on
		cardiovascular risk is being investigated. In addition to the completed Phase 2 programme,
		two Phase 3 studies are ongoing with LDL cholesterol as the primary endpoint, which will
		provide adequate exposure to assess safety sufficiently. The sponsor wishes to initiate a third

		study with major adverse cardiovascular events as the primary endpoint. For the third study, a	
		selective safety data collection approach could be justified considering the data available in	
		light of the principles above.	
3.2	Comprehensive Safety	Comprehensive safety data are collected for specific subset(s) of the patient population where	
	Data Collection for a	additional information is deemed important, whereas selective safety data are collected for	
	Specific Subset(s) of the	other patients. For example, if the patient population in previous studies included few	
	Population, with Selective	patients over the age of 65, it could be of value to collect full data on this population in a new	
	Safety Data Collection for	study in the same indication or in a related indication. Other examples of specific subsets	
	Other Patients	include those based on geographic location; ethnicity; sex; baseline disease status	
		(renal/hepatic impairment), CYP status; or genetics.	
3.3	Comprehensive Safety	In some cases, efficacy studies must enrol many thousands of patients in order to achieve	
	Data Collection in a	adequate statistical power. In such settings, such as a large clinical outcomes study, the	
	Representative Subset of	number of patients planned for enrolment may greatly exceed the number needed to assess	
	the Population, with	the non- serious adverse events adequately. In this setting, comprehensive safety data could	
	Selective Safety Data	be collected for only a representative subset of patients, for example, full data collection	
	Collection for Other	could be undertaken at randomly selected sites.	
	Patients		
3.4	Comprehensive Safety	Comprehensive safety data are collected from baseline through some pre-determined interval	
	Data Collection for the	of the study, with selective safety data collection thereafter. A data monitoring committee	
	Initial Portion of the Study,	could consider the safety data and provide agreement with selective safety data collection for	
	with Selective Data	the subsequent portion of the study. These approaches can be useful for studies designed to	
	Collection Thereafter	assess important long-term drug effects, where safety would be adequately characterised in	
		the early part of the study, e.g., one year, through comprehensive safety data collection. For	
		example, consider a study to prevent an important outcome such as dementia, end-stage	
		kidney disease, and/or hepatic failure. Assuming it would take three years to collect adequate	
		events to have adequate statistical power for efficacy, it may be appropriate to utilize a	
		selective approach to safety data collection once data have been analysed for all patients	
		followed through one year and non-serious adverse events have been deemed to be	

		adequately characterised. The selective approach would discontinue collection of non-serious	
		adverse events, vital signs, laboratory tests, etc., and utilize less frequent study visit intervals.	
		The protocol should include a prospective plan for concurrence of a data monitoring	
		committee prior to the change to selective safety data collection.	
4	RELATIONSHIP WITH	This guideline should be considered in conjunction with other ICH guidelines relevant to the	
	OTHER	conduct of clinical studies and clinical safety data management, e.g., E2A (Clinical Safety Data	
	GUIDELINES/REGULATIONS	Management: Definitions and Standards for Expedited Reporting); E2F (Development Safety9	
		Update Report); E3 (Structure and Content of Clinical Study Reports); E6(R2) (Good Clinical	
		Practice: Integrated Addendum to ICH E6(R1)); E8 (General Considerations for Clinical Trials);	
		and/or E17 (General Principles for Planning and Design of Multi-Regional Clinical Trials).	
		Evaluation of the information generated through post-approval pharmacovigilance activities is	
		also important for all products to ensure their safe use, e.g. E2E (Pharmacovigilance Planning);	
		E2D (Post-Approval Safety Data Management: Definitions and Standards for Expedited	
		Reporting); and E2C(R2) (Periodic Benefit-Risk Evaluation Report).	